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Abstract. Phytoplankton is a diverse group of photosynthetic organisms and accounts for almost half of global primary produc-

tion. However, most existing marine ecosystem models incorporate limited phytoplankton diversity, overlook phytoplankton

evolution, and treat phytoplankton as concentrations instead of particles. Here we present an individual-based phytoplankton

model that captures three dimensions of phytoplankton traits (size, temperature, and light affinities) and allows phytoplankton

cells to mutate in a one-dimensional (1D) water column. Other components of this ecosystem include dissolved inorganic5

nitrogen, twenty size classes of zooplankton, and detritus, all modelled as Eulerian fields. This hybrid plankton model can

reproduce the general seasonal patterns of nutrients, chlorophyll, and primary production in the subtropical ocean. We expect

that this model will be a useful tool for studying phytoplankton physiology, diversity and evolution in the ocean.

1 Introduction10

The ocean carbon cycle plays a pivotal role in affecting how the Earth System responds to climate change (Sigman and Boyle,

2000). Phytoplankton is one of the most critical player in the global ocean carbon cycle, particularly in transporting carbon

from the surface to the deep ocean, a process known as the biological carbon pump (Ducklow et al., 2000; Sigman and Boyle,

2000). In addition, phytoplankton constitutes the basis of the marine food web and contributes to almost half of global primary

production (Field et al., 1998). Given that numerical models are our primary tool to predict how the Earth System will respond15

to climate change induced by anthropogenic release of carbon dioxide, the phytoplankton models have to capture the main

aspects of phytoplankton physiology and ecology.

There are a number of limitations associated with many existing phytoplankton models. First, the majority of plankton

models use the Eulerian framework, while in reality phytoplankton cells are dispersed in the water column by turbulence.

While Eulerian models are widely used and accepted, they can induce discrepancies due to Jensen’s inequality where the20

average of the mean may not necessarily equal the mean of the average (Baudry et al., 2018; Christensen et al., 2022).

It is still unclear whether the Eulerian model or fixed-depth incubations over- or underestimate primary production if we

assume the Lagrangian phytoplankton model represents the ground truth. For example, Barkmann and Woods (1996) suggested
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that the primary production estimates based on incubation bottles fixed at certain depths could overestimate the true primary

production by up to 40%, while the computation by Ross and Geider (2009) suggested only a minor difference.25

The above problem becomes even murkier when phytoplankton acclimation is taken into account due to the different time

scales of acclimation and mixing (Tomkins et al., 2020). Consider the case that phytoplankton acclimate to varying light

conditions by changing intracellular carbon-to-chlorophyll (C:Chl) ratios. If the water column mixing rate is faster than the

acclimation rate, phytoplankton cells are essentially acclimating to the average light condition experienced throughout their

life cycle, which may exacerbate the effect of Jensen’s inequality. By contrast, if the mixing rate is slower than the acclimation30

rate, phytoplankton cells constantly adjust their intracellular C:Chl ratios which is more similar to the Eulerian scenario in

which phytoplankton cells are fixed at depth. In addition to light acclimation, phytoplankton can adjust their intracellular

nutrient quota to acclimate to the external nutrient environment (Morel, 1987). Further considering the stochastic nature of the

movements of phytoplankton cells, it is challenging if not impossible to quickly tell the difference between the Eulerian and

Lagrangian model outputs.35

What complicates things further is that the acclimation time scales (and other rates such as photosynthesis and nutrient

uptake) depend on phytoplankton traits such as cell size (Litchman et al., 2009; Edwards et al., 2012). When comparing

small against large cells, acclimation may take place much faster for a small cell than a large cell. Unfortunately, most of the

Lagrangian phytoplankton models did not consider phytoplankton traits, which leaves more uncertainty in comparing primary

production estimates between Eulerian and Lagrangian models.40

It is worth mentioning that phytoplankton have multiple traits in addition to cell size. The well-known Darwin model devel-

oped by Mick Follows and his colleagues (Follows et al., 2007; Barton et al., 2010; Ward et al., 2012; Dutkiewicz et al., 2020)

incorporates at least three dimensions of phytoplankton traits: cell size that primarily determines nutrient kinetics, optimal

temperature that determines phytoplankton preference to temperature, and optimal light that characterizes phytoplankton pref-

erence for light. To our knowledge, there has not been an individual-based phytoplankton Lagrangian model which incorporates45

these traits.

Here, we introduce a novel depth-resolved 1D-hybrid model designed to analyse the influence of water column dynamics

on phytoplankton growth, productivity and diversity. This hybrid model is built upon the common nutrient-phytoplankton-

zooplankton-detritus (NPZD) framework but encloses an individual-based (Lagrangian) module, that computes the phyto-

plankton community, coupled with an Eulerian module, that calculates the vertical distribution of the remaining tracers (ni-50

trogen concentration, zooplankton and detritus) as continuous concentrations. The Lagrangian module simulates the phyto-

planktonic community as super-individuals each representing a cluster of clonal phytoplankton cells that are physiologically

identical and share a common history. This type of mixed Eulerian and Lagrangian modelling approach has been used beyond

plankton modelling, such as in the field of aerosol-cloud interactions (Grabowski et al., 2019; Dziekan and Zmijewski, 2022).

The model’s primary currency is nitrogen, but it also estimates the carbon and chlorophyll content of phytoplankton cells.55

Phytoplankton physiological rates, which characterise each super-individual, vary with time and depth according to nutrient

availability, temperature conditions, and light (Geider et al., 1998; Ross and Geider, 2009), and three master traits: cell size (ex-

pressed in terms of the maximal carbon content per cell during its life cycle), optimal temperature, and light affinity (expressed
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in terms of the initial slope of the Photosynthesis-Irradiance (P-I) curve). The diversity of phytoplankton super-individuals is

sustained by grazing and mutation. The model structure is shown in Fig. 1.60

In the following sections, we first describe our ecological model and the differential equations that govern the growth and

selection of phytoplankton. Next, we present the main results of the model and discuss its merits and limitations.
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Figure 1. Conceptual diagram of the 1D-hybrid Eulerian-Lagrangian model. N: Nitrogen. C: Carbon. Chl: Chlorophyll. The black arrows

represent nitrogen flows.

2 Model description

2.1 Overview

The model is a 1D hybrid model expanded on the classic Nitrogen-Phytoplankton-Zooplankton-Detritus (NPZD) model. Phy-65

toplankton cells are represented by super-individuals (the Lagrangian module), which is coupled to an Eulerian module, that

calculates the dynamics of dissolved inorganic nitrogen (DIN), multiple size classes of zooplankton (ZOO), and detritus (DET)
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as continuous concentrations along the vertical domain. In the next subsections, we will describe both modules in detail. All

model parameters are listed in Tables 1 and 2.

2.2 Lagrangian module70

2.2.1 Super-Individuals

The Lagrangian module simulates the phytoplanktonic community as super-individuals (a cluster of identical phytoplankton

cells) to represent a realistic number of phytoplankton cells with affordable computational costs (Scheffer et al., 1995). To

avoid memory issues, we assign a constant number of super-individuals throughout the simulation.

2.2.2 Phytoplankton model75

We assign three master traits, cell size, optimal temperature (Topt, ◦C), and the initial slope of the Photosynthesis-Irradiance (P-

I) curve (αChl, (W2 m−1 g Chl (mol C)−1)−1 d−1) to each phytoplankton super-individual. Cell size determines the capability

of phytoplankton to take up inorganic nutrients and its vulnerability to zooplankton grazing. Cell size is expressed in terms of

the maximal carbon content per cell (Cdiv , pmol C cell−1). Note that while the actual cellular carbon content (PC , pmol C

cell−1) can vary as a result of photosynthesis and respiration depending on its nutrient and light environment, we assume that80

the traits of nutrient uptake and zooplankton grazing only depend on Cdiv because otherwise these traits will change constantly

with time.

The dynamics of phytoplankton cellular carbon (PC), nitrogen (PN , pmol N cell−1), and chlorophyll (PChl, pg Chl cell−1)

are modelled following Geider et al. (1998):

1
PC

dPC

dt
= PC − ζ V C

N −RC f(T ), (1)85

1
PN

dPN

dt
=

V C
N

QN
−RN f(T ), (2)

1
PChl

dPChl

dt
=

ρChl V C
N

θC
−RChl f(T ) (3)

PC (d−1) is the carbon-specific photosynthesis rate, ζ (mol C mol N−1) is the cost of biosynthesis, V C
N (mol N mol C−190

d−1) is the nitrogen uptake rate, QN (mol N mol C−1) is the cellular N:C ratio, ρChl (dimensionless) is the fraction of

phytoplankton carbon production that is devoted to chlorophyll synthesis, θC (g Chl mol C−1) is the ratio of Chl synthesis to

carbon fixation (representing phytoplankton acclimation to light variability), RC , RN and RChl (d−1) are the phytoplankton

respiration rates for carbon, nitrogen and chlorophyll, respectively. f(T ) is the function describing the temperature (T , K)

dependence of phytoplankton metabolism which is detailed in the temperature section below.95
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Eq. 1 states that phytoplankton cellular carbon is fueled by photosynthesis that converts inorganic carbon to organic carbon,

but is depleted by the cost of both nutrient uptake and respiration. Eq. 2 states that phytoplankton cellular nitrogen is fueled by

phytoplankton uptake of nitrogen, but is depleted by respiration. Eq. 3 states that phytoplankton cellular chlorophyll content

is fueled by chlorophyll synthesis which depends on both photosynthesis and nitrogen uptake, but is consumed by respiration.

It is important to note that we implicitly assume that PC , PN , and PChl are not affected by zooplankton grazing which only100

reduces the number of cells per super-individual.

PC is a function of light availability as defined below:

PC = PC
m

[
1− e

(
−αChl θC I A∞

P C
max

)]
(4)

where PC
m (d−1) is the maximal carbon-specific photosynthesis rate, I (W m−2) is the irradiance, and A∞ (dimensionless) is

the term that accounts for photosynthetic photoinhibition (see Eq. 6) which was not included in Geider et al. (1998).105

PC
m depends on intracellular nutrient status:

PC
m = µm

QN −QN
min

QN
max−QN

min

(5)

where µm (d−1) is the maximal specific growth rate as a function of temperature under resource (nutrient and light) replete

conditions (see Eq. 10), and QN
max (mol N mol C−1) is the maximal nitrogen-to-carbon ratio and QN

min is the minimal nitrogen

cell quota. QN
max and QN

min are size dependent (Table 2).110

To simulate the short-term responses of phytoplankton cells to potential high light stress when being dispersed to the surface,

we include photoinhibition into the phytoplankton model following Ross and Geider (2009). Photoinhibition decreases the

photosynthesis rate due to the damage of D1 protein under high light, and it is expressed as the fraction of open Photosynthetic

Units (PSU) (Han, 2002; Nikolaou et al., 2016):

A∞ =
1

1 +σPSII I τ + K σ2
PSII I2 τ

(6)115

σPSII (m2 W−1) is the effective absorption cross-section of the Photosystem II (PSII) and is parameterized as a power-law

relationship with θC : σPSII = δ (θC)κ (Nikolaou et al., 2016). δ ((W m−2)−1 (g Chl g C−1)−1) and κ (dimensionless) are

constants (Table 1). τ (s) is the turnover time of the electron transfer chain and K (s−1) is the ratio of damage to repair constants

(K = kd/kr).

The tension between photo-damage (kd, dimensionless) and repair (kr, s) of a PSU determines the fraction of open reaction120

centres and abundances of D1 proteins at a given light level. To set up a trade-off between high-light adapted and low-light

adapted ecotypes (Moore et al., 1998), we assume that kr and αChl are negatively correlated such that phytoplankton cells

that are adapted to low-light (i.e., with larger αChl), have a reduced capability of photo-repair (i.e., smaller K) (Key et al.,

2010). Conversely, phytoplankton cells adapted to high-light (larger K) have a greater capability to cope with photoinhibition
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but are less efficient in absorbing photons under low light (smaller αChl). In addition, we consider the effect of nutrient status125

of phytoplankton on cells’ ability to photo-repair as nutrient limitation can jeopardize photosynthetic energy transfer efficiency

(Herrig and Falkowski, 1989). Therefore, we come up with the following relationship describing kr:

kr = a(
αChl

b
)v QN −QN

min

QN
max−QN

min

, (7)

in which a = 2× 10−5, b = 5× 10−7, and v =−6.64 are constants. These parameters are obtained via fitting to the data of

Prochlorococcus in Moore et al. (1998).130

Phytoplankton nitrogen uptake (V C
N ) depends on both external levels of DIN and intracellular nitrogen status:

V C
N = V C

m

DIN
DIN +KN

(
QN

max−QN

QN
max−QN

min

)n

(8)

with V C
m = µmQN

max (mol N mol C−1d−1) being the maximal specific nitrogen uptake rate, and KN (µM ) being the half-

saturation constant for DIN uptake. n (dimensionless), varying between 0 and 1, is the shape factor adjusting the dependence of

the maximum uptake rate (V C
m ) on cell quota (QN ) (Geider et al., 1998). All three parameters, KN , QN

max, and QN
min, depend135

on cell size following allometric relationships (Table 2).

ρChl (dimensionless) depends on light, photosynthetic rate, the initial slope of the P-I curve (αChl), and Chl:C ratio (θC):

ρChl = θN
max

PC

αChl θC I
(9)

where θN
max is the maximum chlorophyll to nitrogen ratio (g Chl mol N−1). During dark hours when I = 0, ρChl is assumed

to be equal to the value calculated at the end of the preceding light period.140

The maximal growth rate, µm, depends on Topt (K) as well as environmental temperature (T , K) following (Chen, 2022)

which extends from the Metabolic Theory of Ecology (Dell et al., 2011; Chen and Laws, 2017):

µm = µ0
Ea + Ed

Ed

eEa(x−θ)

1 + Ea

Ed
e(Ea+Ed)(x−θ)

(10)

in which θ and x are the transformed optimal and environmental temperatures (for mathematical convenience), respectively

(θ = 1
kb

( 1
T0
− 1

Topt
) and x = 1

kb
( 1

T0
− 1

T ), with T0 (K) being the reference temperature at 288 K). µ0 (d−1) is the normalization145

constant for µm (θ = 0), Ea (eV) is the intraspecific activation energy, and Ed (eV) is the nominal activation energy regulating

how fast the growth rate (µ, d−1) decreases with T when x > θ. kb (eV K−1) is the Boltzmann constant.

Based on analyzing a dataset of phytoplankton growth against temperature, µ0 (d−1), Ea (eV), and Eh (eV) are found to be

allometric functions of θ (Chen, 2022):

µ0 = µ′ eEiθ (11a)150

Ea = Ea0 eβθ (11b)

Eh = Eh0 eϕθ (11c)
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in which µ′ (d−1) is the normalization constant for µ0 when θ = 0, Ei (eV) is the interspecific activation energy, Ea0 (eV) is

the normalization constant for Ea when θ = 0, β (eV) is the scaling exponent against θ for Ea, Eh0 (eV) is the normalization

constant for Eh when θ = 0, and ϕ (eV) is the scaling exponent for Eh.155

Following Wirtz (2011), we assume that µ′ varies with cell Equivalent Spherical Diameter (ESD, µm) as a result of intra-

cellular self-shading and excess density:

µ′ =
µ′0

1 + a0

(
ρs

ρ0

) 1
3

ESD
(12)

where a0 (= 0.34 m−1) is the length scale of photosynthesis depletion, ρs (= 0.25 pg C m−3) is the carbon density at a reference

ESD (ESDs = 8.00 µm), ρ0 (= 0.50 pg C m−3) is the specific carbon density for the relative chloroplast volume (VChl/V ).160

We also assume that phytoplankton respiration (RC , RN , and RChl) follow the same temperature dependence as µm (Barton

et al., 2020).

Following Wirtz (2011), we assume that these specific respiration rates scale inversely with phytoplankton ESD:

RC = RC,s
ESDs

ESD
(13)

where RC,s is the temperature dependent respiration rate at ESDs. If T = Topt, RC,s = 0.025 d−1 for the specific respiration165

rates of phytoplankton carbon, nitrogen and chlorophyll.

Eqs. 12 and 13 capture the unimodal relationship between maximal growth rate and cell size (Chen and Liu, 2010, 2011;

Marañón et al., 2013). If a phytoplankton cell is too large, its self-shading and intracellular decline of CO2 reduces its maximal

growth rate. On the other hand, if a cell is too small, the high specific respiration cost leads to a rapid decline in maximal

growth rate. This constraint on the range of cell size plays a fundamental role in shaping phytoplankton size structure in the170

model in which the phytoplankton cells are allowed to evolve freely.

2.2.3 Phytoplankton division, death, and evolution

Phytoplankton cell division takes place when the cellular carbon content reaches Cdiv (Cianelli et al., 2009; Ross and Geider,

2009). When a cell divides, the parent cell is split into two equal daughter cells, each inheriting half of the carbon, nitrogen,

and chlorophyll content. As a consequence, the number of cells per super-individual doubles.175

Phytoplankton cell dies when phytoplankton cellular carbon falls below a minimal threshold (Cmin, pmol C cell−1) defined

as a quarter of Cdiv (Ross and Geider, 2009) or when the total amount of nitrogen of a super-individual drops below 0.10% of

the average nitrogen content of all super-individuals.

It is important to note that in addition to respiratory cost, phytoplankton cells suffer from zooplankton grazing. We assume

that zooplankton grazing can only reduce the number of cells per super-individual without affecting cellular carbon or nitrogen.180

When a cell dies, its nitrogen content is converted into detritus. At the same time, to keep the number of super-individuals

constant, the super-individual with the maximum nitrogen content is divided into two new super-individuals each with half of

the number of cells of the parent super-individual.
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When phytoplankton cells divide, they are allowed to have a small probability to mutate (i.e., changing the values of the three

traits log(Cdiv), Topt, and log(αChl)) following a Gaussian distribution with the mean equal to the parent cell’s trait value and185

a given standard deviation. The probability of a super-individual to mutate is proportional to its number of cells. Although it

may not accurately reflect reality, for the sake of simplicity and ease of modelling, we assume that all ecotypes share the same

mutation rate. However, in reality, mutation rates can vary among different phytoplankton ecotypes (Beardmore et al., 2011),

and even within the same species when subjected to stress (Bjedov et al., 2003). Besides, while we assume that the mutation of

one trait is independent of others, the user can modify the mutation covariance matrix to change how the mutation of one trait190

can depend on those of other traits.

2.2.4 Mean trait and trait (co)variance

We characterize phytoplankton community composition in terms of mean trait and trait covariance. Trait covariance can be

used to represent part of functional diversity (Norberg et al., 2001; Chen et al., 2019).

The community mean phytoplankton trait is calculated as the carbon-weighted mean of all phytoplankton cells in the com-195

munity:

l =
∑k

i=1 li ni PC,i∑k
i=1 ni PC,i

(14)

in which li and ni represent the trait value and the number of cells of super-individual i, respectively. PC,i represents the

cellular carbon content of super-individual i.

The trait covariance is calculated as:200

COV(lj , lm) =
∑k

i=1(lj − lj) (lm− lm) ni PC,i∑k
i=1 ni PC,i

(15)

where lj and lm represent the mean trait value of trait j and m, respectively. It is important to note that we treat log(Cdiv),

Topt, and log(αChl) as traits as they are more likely to follow normal distribution than the raw units.

2.2.5 Functional diversity

We calculated the functional richness and evenness of phytoplankton cells using the R package TPD which considers intraspe-205

cific trait variability by computing multidimensional trait probability densities using Gaussian kernels (Mason et al., 2005;

Carmona et al., 2019).

In brief, the functional richness is calculated as the amount of functional space occupied by all phytoplankton superindi-

viduals in a community, similar to the volume calculated by the hypervolume approach (Blonder et al., 2018). The functional

evenness measures how even the relative abundances of different trait values are in a community.210

2.3 Eulerian module

Dynamics of dissolved inorganic nitrogen, zooplankton, and detritus are modelled as Eulerian fields.
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2.3.1 Dissolved inorganic nitrogen

The temporal and spatial variability of dissolved inorganic nitrogen (DIN, mmol N m−3) depends on the total nutrient uptake

by phytoplankton (Puptake, mmol N m−3; see Eq. 17), zooplankton excretion (Zexc; see Eq. 18) and detritus regeneration215

(Dreg; see Eq. 19), and vertical diffusion (last term of Eq. 16):

∂DIN
∂t

=−Puptake + Zexc + Dreg +
∂

∂z

[
Kv(z)

∂DIN
∂z

]
(16)

where Kv(z) (m2 s−1) is the vertical eddy diffusivity at each depth layer. Puptake at grid s during the time step ∆t is the sum

of the nutrients taken up by all super-individuals within grid s:

Puptake =
1

H(s)

k∑

i=1

[(
PN,i(t + ∆t)−PN,i(t)

)
ni(t + ∆t)

]
(17)220

in which H(s) (m) is the height of the vertical grid s, PN,i(t+∆t) and PN,i(t) (mmol N per cell) represent the cellular nitrogen

content of super-individual i at time t + ∆t and t, respectively, and ni(t + ∆t) represents the number of cells associated with

the super-individual i at time t + ∆t.

We assume that Zexc is a constant fraction of the total amount of food ingested by all zooplankton:

Zexc = (1− ξ− η)
Nz∑

j=1

Ij ZOOj (18)225

where ξ (dimensionless) is the gross growth efficiency of zooplankton, assumed constant for each size class. η (dimensionless)

is the fraction of unassimilated food by zooplankton, also assumed constant for each size class. Ij (d−1) is the per capita total

ingestion rate of zooplankton size class j and is elaborated in the following section.

Dreg is a linear function of detritus concentration (DET) as well as temperature:

Dreg = Rdn DET fh(T ) (19)230

where Rdn (d−1) is the conversion rate from detritus to dissolved inorganic nitrogen, and fh(T ) describes the temperature

dependence of heterotrophic activities including zooplankton grazing and detritus regeneration formulated according to the

Arrhenius equation:

fh(T ) = e
Ez
kb

(
1

Tref
− 1

T

)
(20)

where Ez (eV) is the activation energy for heterotrophic processes (Table 1).235

2.3.2 Zooplankton

The model resolves 20 size classes of zooplankton spaced uniformly in log space from 0.80 to 3600 µm ESD. We define the

smallest size class as 0.80 µm to mimic the smallest heterotrophic eukaryotes in the ocean that predominantly feed on bacteria.

The upper limit of 3600 µm is selected as a result of a tradeoff between providing appropriate grazers that can feed on large
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phytoplankton and computing demand as we wish to fix the number of zooplankton size classes as 20. Because phytoplankton240

cells are allowed to freely evolve in the simulation, it is possible that some phytoplankton cells can evolve into an extremely

large (or small) size that no zooplankton can feed on. But we cannot design a size range of zooplankton too large because

otherwise there would be too few zooplankton size classes within the realistic zooplankton size range.

The nitrogen biomass of each zooplankton size class (ZOOj , mmol N m−3) increases with the amount of prey (including all

phytoplankton super-individuals and zooplankton smaller than themselves) they can eat, but is reduced by the predation from245

larger zooplankton in additional to the natural mortality.

∂ZOOj

∂t
= ZOOj ξj

J∑

jprey=1

Ij,jprey −
Nz∑

jpred=1+j

ZOOjpred
Ijpred,j −ZOOj mz fh(T ) +

∂

∂z

(
Kv(z)

∂ZOOj

∂z

)
(21)

where mz (d−1) is the linear zooplankton mortality rate. J is the total number of prey items including all phytoplankton

super-individuals within the grid and other smaller zooplankton.

Zooplankton per capita ingestion rate (Ijpred,jprey
, d−1) is calculated following a sigmoidal functional response, depending250

on total prey biomass (Bjprey
, mmol N m−3) (Ward et al., 2012):

Ijpred,jprey
= fh(T ) Imax

jpred

ϕjpred,jpreyBjprey

Fjpred
+ KP,jpred

(1− eΛFjpred ) (22)

where Imax
jpred

(d−1) is the size-dependent maximum ingestion rate (Table 2) (Hansen et al., 1997; Ward et al., 2012). ϕjpred,jprey

(dimensionless) is the palatability of prey jprey for predator jpred. Fjpred (mmol N m−3) is the total prey availability for predator

jpred, and KP,jpred (mmol N m−3) is the grazing half-saturation constant of predator jpred. The term (1− eΛF ) represents the255

effect of prey refuge which reduces the grazing effort as available prey becomes scarce (Ivlev, 1955; Mayzaud and Poulet,

1978). The total ingestion rate of zooplankton size class j is therefore Ij =
∑J

jprey=1 Ij,jprey
.

The food availability for the zooplankton size class jzoo (Fjzoo) includes both phyto- and zooplankton prey and is computed

as:

Fjzoo =
k∑

iphy=1

ϕjzoo,iphy Biphy +
jzoo−1∑

izoo=1

ϕjzoo,izoo Bizoo (23)260

in which k is the number of super-individuals within the vertical grid. Biphy = niPhy PN,iPhy/H and Bizoo (mmol N m−3) are

the nitrogen biomass of the ithPhy phytoplankton super-individual and the ithzoo zooplankton size class, respectively. Note that

there is no zooplankton prey for the smallest zooplankton size class (jzoo = 1). We assume that zooplankton do not feed on

other zooplankton larger than their own size, but can feed on any phytoplankton prey, although feeding on a phytoplankton

prey larger than their optimal prey size is penalized by the low prey palatability, ϕjpred,jprey (dimensionless):265

ϕjpred,jprey = exp

[
−
(

ln
(

ϑjpred,jprey

ϑopt

))2(
2σ2

jpred

)−1
]

(24)

where ϑjpred,jprey (dimensionless) is the predator:prey volume ratio, ϑopt (dimensionless) is the optimal predator:prey volume

ratio (Kiørboe, 2009), and σjpred (dimensionless) is the standard deviation of the feeding kernel.
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ϑopt is estimated from the optimal prey size defined as ESD (ESDpred
preyopt

) vs. predator ESD (ESDpred) (Hansen et al., 1994;

Banas, 2011):270

ESDpred
preyopt

= 0.65 ESD0.56
pred (25)

As we assume zooplankton grazing only affects the number of cells per super-individual (niphy ) instead of cellular carbon or

nitrogen, it turns out that it is not a trivial task to estimate the changes in niphy to conserve total nitrogen. We assume that the

phytoplankton mortality due to zooplankton grazing (gphy, d−1), or the proportional loss of nitrogen content, during the time

step ∆t, is equal for all phytoplankton cells within the same super-individual (and the same for all phytoplankton cells within275

the same vertical layer). While the deaths of phytoplankton cells can be a binomial process, we can assume that the loss of cell

numbers within a super-individual is proportional to the grazing rate gphy thanks to the law of large numbers (Beckmann et al.,

2019). Therefore, we have:

niphy(t + ∆t) = niphy(t) (1− gphy ∆t) (26)

The total phytoplankton biomass loss due to zooplankton grazing within each vertical layer (PG, mmol N m−3) can be280

calculated as (note that we drop the subscript of z for convenience):

PG =− 1
H

k∑

iphy=1

PN,iphy(t)

(
niphy(t)−niphy(t + ∆t)

)

=− 1
H

k∑

iphy=1

PN,iphy(t)

(
niphy(t)−niphy(t)(1− gphy ∆t)

)

=− 1
H

k∑

iphy=1

PN,iphy(t) niphy(t) gphy ∆t

= gphy ∆t

∑k
iphy=1 PN,iphy(t) niphy(t)

H

=
NZ∑

jzoo=1

Ijzoo,iphy ∆t (27)

where k is the number of phytoplankton super-individuals within the vertical layer.

Since
∑k

iphy=1 PN,iphy (t) niphy (t)

H is the total phytoplankton nitrogen concentration within each vertical layer (PN ), we can

derive:285

gphy =

∑NZ

jzoo=1 Ijzoo,iphy

PN
(28)

Hence, the number of cells within a super-individual at the next time step (t + ∆t) can be computed as:

niphy(t + ∆t) = niphy(t)

(
1−

∑NZ

jzoo=1 Ijzoo,iphy

PN
∆t

)
(29)
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It is therefore important that the grazing effect (niphy
(t + ∆t)) has to be computed before phytoplankton nutrient uptake

(PP , Eq. 17).290

2.3.3 Detritus

Changes in the concentration of detritus (DET, mmol N m−3) are computed as:

∂DET
∂t

=
Nz∑

j=1

(
η Ij + mz fh(T )

)
ZOOj −Rdn DET fh(T )−Wd

∂DET
∂z

+
∂

∂z

(
Kv(z)

∂DET
∂z

)
(30)

where Wd (m d−1) is the detritus sinking rate.

2.3.4 Phytoplankton biomass, trait distribution, and primary production295

The Eulerian module additionally calculates the total phytoplankton nitrogen, carbon and chlorophyll concentration, and the

net primary productivity at each grid layer. The concentration of total phytoplankton nitrogen, carbon and chlorophyll biomass

(B∗;BPN
, mmol N m−3; BPC

mmol C m−3; and BPCHL
mg Chl m−3) is computed at each grid layer as (note that we drop

the subscript of z for convenience):

B∗ =

∑k
i=1 P ∗iphy

·niphy

H
, (31)300

where P∗iphy refers to the three different units of mass (i.e., PN , PC and PCHL).

Net Primary Productivity (NPP , mg C m−3 d−1) is integrated over a daily cycle:

NPP =
1
H

24∑

t=0

k(t)∑

i=1

[
∆PC,i(t) ni(t)

]
(32)

where k(t) is the number of phytoplankton super-individuals at time t.

2.4 Size Spectra305

Size spectra have been widely used to provide useful insights into the size structure and energy flow of aquatic communities

(Platt and Denman, 1977). To illustrate how this model can be used to simulate the plankton size distribution, we plotted the

size spectra for both phyto- and zooplankton at surface water and compared them between winter (31st March) and summer

(31st August).

To compute the size spectra, we counted the abundances of phytoplankton and zooplankton into the 20 size bins designed310

for zooplankton, although the phytoplankton cells were missing in large size classes.

Zooplankton abundances were estimated as the ratio between the zooplankton carbon divided by the individual carbon

content of each size class. The individual carbon content of zooplankton was estimated from their biovolume following the
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allometric relationship proposed by Harris et al. (2000). First, based on the ESD of each zooplankton size class, their cell

volume was calculated:315

ZC = ρZ
π

6
ESD3 pd pc, (33)

where ρZ is the density of zooplankton organisms, assumed to be equal to seawater density (1.025 g cm−3). pd (dimensionless)

is the proportion of wet mass constituted by dry mass, and pc (dimensionless) is the proportion of dry mass constituted by

carbon. We used the pd and pc values defined for non-gelatinous zooplankton (0.20 and 0.45, respectively). The carbon content

of each zooplankton size class was converted from zooplankton nitrogen using the Redfield ratio (C:N = 106:16).320

The size spectra of both phytoplankton and zooplankton were calculated as Ordinary Least-Squares (OLS) regression lines

with log10(abundance) as the response variable and log10(biovolume) as the predictor. All zero abundance data were removed.

In addition, the abundance data of the two smallest size classes (0.8 µm, 1.2 µm) were removed for zooplankton because such

small size classes, deviating from the normal linear trend, were not often considered in the construction of size spectra.

2.5 Physical forcing325

As a case study, our 1D model simulates the upper 250 m of the Bermuda Atlantic Time-series Study (BATS) station, although

some details (e.g., phosphorus limitation instead of nitrogen limitation) are not considered to keep its generality. A total of 100

depth levels define the vertical grid, with increasing resolution towards the sea surface following a sigma grid, similar to that

used in the Regional Ocean Modeling System (ROMS; Shchepetkin and McWilliams (2005)).

The model is forced with three external environmental variables: temperature, vertical eddy diffusivity (Kv), and photosyn-330

thetically active radiation (PAR). Temperature profiles are imported from World Ocean Atlas 2013 (Locarnini et al., 2024).

Vertical eddy diffusivity profiles (Kv , m2 s−1) were interpolated from a previous model output (Bruggeman and Bolding,

2014; Le Gland et al., 2021). We define the Mixed Depth Layer (MLD, m) as the depth at which Kv < 10−4 m2 s−1.

Surface PAR (I0, W m−2) at BATS station was estimated as a function of mid-day light, time of the day, and day length

following Anderson et al. (2015). Light values along the water column (Iz , W m−2) are estimated at each time step following335

the Beer-Lambert law, based on I0 and chlorophyll concentration:

Iz = I0 e−z (Kw+KChl
∫ 0

z
Chl(z) dz), (34)

where Kw (m−1) and KChl ((mg Chl m2)−1) are the attenuation coefficients for seawater and chlorophyll a, respectively.

Fig. 2 shows the temporal and spatial distribution of the physical forcing variables, representing the typical seasonal vari-

ability at the BATS station. During winter and early spring, the temperatures were low while Kv were high. The mixed layer340

reaches a maximum depth of around 250 m from February to the end of March. Starting from April, an abrupt decrease in

MLD is observed, associated with a decrease in Kv and an increase in temperature in the first 25 m of the water column. From

late spring to late summer, the water column is strongly stratified. It can be observed how the surface mixed layer gets warmer

and reaches a depth ∼ 50 m in September. At the beginning of fall, a decrease in temperature and an increase in Kv deepens

the surface mixed layer.345
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Figure 2. Temporal and vertical variability of the model forcing variables. (a) Temperature (◦C), (b) Vertical diffusivity (Kv , m2 s−1), and

(c) Photosynthetically active radiation (PAR; W m−2). In (b), the white line identifies the mixed layer depth (m).

2.6 Vertical movements of particles

The movement of both super-individuals and passive particles due to diffusion is simulated as a random walk following Visser

(1997). The following equation computes the change in position (zt) for an individual particle from the depth at time t , to time

t + 1 (zt+1) over a finite time step, δt:

zt+1 = zt + K ′
v(zt) δt + R

√
2 r−1 Kv(zt +

1
2

K ′
v(zt) δt) δt, (35)350

where K ′
v(zt) represents the gradient of diffusivity (= δKv/δz) at depth zt, R is a random factor corresponding to a uniformly

distributed random variable with a mean of zero and variance r (r = 1
3 for a uniform distribution between - 1 and 1) (Ross and

Sharples, 2004).

We assume no vertical velocity of currents in the system. The sinking rate of phytoplankton cells depends on cell size,

following the allometric relationship in Durante et al. (2019) (Table 2).355

To ensure that the random walk works correctly, the Lagrangian module also computes the movements of 1000 passive inert

particles whose trajectories can be tracked.
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Table 1. Fixed parameters of the 1D-hybrid model.

Parameter Symbol Value Units

Phytoplankton maximal chlorophyll to nitrogen ratio1 θN
max 3 g Chl mol N−1

Phytoplankton cost of biosynthesis1 ζ 3.00 mol C mol N−1

Shape-factor describing the dependence of V C
max on QN 1 n 1.00 dimensionless

Phytoplankton maximal growth rate when Topt = 15 ◦C2 µ′ 5 d−1

Interspecific activation energy2 Ei 0.22 eV

Normalization constant for Ed
2 Ed0 2.3 eV

Normalization constant for Ea
2 Ea0 0.98 eV

Activation energy for heterotrophic processes3 Ez 0.65 eV

Boltzmann constant kb 8.62× 10−5 eV K−1

Scaling exponent against θ for Ea
2 β -0.20 eV

Scaling exponent against θ for Ed
2 ϕ 0.27 eV

Normalization constant of the σPSII and θC relationship4 δ 0.492 m2 W−1 g C g Chl−1

Exponent of the σPSII and θC relationship4 κ 0.469 dimensionless

Turnover time of the electron transfer chain4 τ 5.50× 10−3 s

Damage constants of a PSU4 kd 5.00× 10−6 dimensionless

Zooplankton grazing half-saturation constant KP,jpred 0.15 mmol N m−3

Coefficient of the prey refuge5 Λ -6.60 (mmol N)−1 m3

Zooplankton gross growth efficiency6 ξ 0.30 dimensionless

Fraction of unassimilated food by zooplankton6 η 0.24 dimensionless

Zooplankton mortality rate at 15 ◦C mz 0.005 d−1

Standard deviation of zooplankton grazing kernel5 σjpred 0.5 dimensionless

Conversion rate from detritus to DIN at 15 ◦C Rdn 0.10 d−1

Detritus sinking rate Wd 0.50 m d−1

Light attenuation coefficient for seawater7 Kw 0.04 m−1

Light attenuation coefficient for chlorophyll7 KChl 0.025 (mg Chl m−2)−1

1. Geider et al. (1998); 2. Chen (2022); 3. Brown et al. (2004); 4. Nikolaou et al. (2016); 5. Ward et al. (2012); 6. Buitenhuis et al. (2010);

7. Gan et al. (2010).

15

https://doi.org/10.5194/gmd-2024-130
Preprint. Discussion started: 22 August 2024
c© Author(s) 2024. CC BY 4.0 License.



Table 2. Size scaling coefficients of phytoplankton and zooplankton traits following the general formula (y = aV b; V :

cell volume (µm3)). For the size scaling of maximal phytoplankton growth rate and respiration rate, see Eqs. 12 and 13.

Variable Symbol a b Units

Phytoplankton cellular carbon1 PC 0.20 0.88 pmol C cell−1

Phytoplankton half-saturation constant for nitrogen uptake2 KN 0.14 0.33 mmol N m−3

Phytoplankton cellular maximum N:C ratio3 QN
max 0.25 -0.07 mol:mol

Phytoplankton cellular minimal N:C ratio4 QN
min 0.07 -0.17 mol:mol

Sinking rate of phytoplankton5 Wphy 0.0019 0.43 d−1

Zooplankton maximum grazing rate6 Gmax 21.90 -0.16 d−1

1. Menden-Deuer and Lessard (2000); 2. Edwards et al. (2012); 3. Marañón et al. (2013); 4. Ward et al. (2012); 5. Durante

et al. (2019)

2.7 Initial conditions

Initial concentrations of DIN were interpolated from the January profile of BATS from the World Ocean Atlas (Garcia et al.,

2024). The total initial concentration of all zooplankton size classes was assumed as 0.1 mol N m−3 throughout the water360

column and was split equally among 20 size classes. We initialized 20000 phytoplankton super-individuals and 1000 passive

particles and these numbers do not change during the simulation. The vertical positions of both the passive and the phytoplank-

ton super-individual particles were randomly assigned between the surface (0 m) and the bottom (250 m) at the start of the

simulation following a uniform distribution.

The ESD of each phytoplankton super-individual was randomly assigned between 0.80 and 60.00 µm following a uniform365

distribution on the log space. The phytoplankton cellular carbon content was derived from cell volume following Marañón

et al. (2013) (Table 2). The initial cellular nitrogen content was then estimated following the Redfield ratio (C:N = 106:16

mol:mol). The initial cellular chlorophyll content was estimated assuming a Chl:C ratio of 1:50 (g:g). The initial number of

cells per phytoplankton super-individual was calculated assuming a uniform concentration of phytoplankton nitrogen of 0.1

mmol m−3 throughout the water column.370

2.8 Boundary conditions

To preserve total nitrogen, we apply Neumann boundary conditions for both surface and bottom boundaries. We also assume a

reflective boundary for particles that encounter both surface and bottom boundaries during random walk. We leave the option

to use the Dirichlet boundary condition if one wishes to.

2.9 Model simulations375

To reach (quasi) steady-state seasonal cycles, the 1D-hybrid model was run for 6 years. Only the last year is analyzed in this

study. We use the forward Euler method with a constant time step of 10 min throughout to numerically solve the differential
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equations of biological processes. However, because the vertical random walk requires a short time step (Ross and Sharples,

2004), we allowed the particles to have 100 time steps within each biological time step (i.e., a time step of 6 s for the random

walk).380

As the particle random walk is a significant step consuming computing time, we implemented parallel computing to run

particle random walk using open MPI (Gabriel et al., 2004).

2.10 Observational data

For validating model outputs, we downloaded observational data of DIN (nitrate and nitrite), Chl, and NPP from the BATS

website (https://bats.bios.asu.edu/). To interpolate the data of each vertical grid at each date from the irregular cruise data, we385

used k-nearest neighbours (KNN) algorithm with each data point calculated as the mean of the three nearest neighbours.

3 Results

Below we first describe the behavior of the phytoplankton model, followed by an in-depth examination of the 1D model

output. Then we compare the modelled fields of DIN, Chl, and NPP against observations to ensure that our model can at least

qualitatively reproduce the main patterns of observations. Afterwards, we show some patterns from the model outputs that may390

be interesting but hard to directly measure in situ.

17

https://doi.org/10.5194/gmd-2024-130
Preprint. Discussion started: 22 August 2024
c© Author(s) 2024. CC BY 4.0 License.



3.1 Phytoplankton fitness landscapes
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Figure 3. Contour plots for phytoplankton growth rate (µ, d−1), N:C ratio (QN , mol:mol) and Chl:C ratio (g:g) as functions of the three

master traits (size, ESD (µm); optimal temperature, Topt (◦C); and light affinity, αChl (W2 m−1 g Chl mol C−1 d−1)) at equilibrium under

a typical summer condition (dissolved inorganic nitrogen = 0.10 mmol N m−3, temperature = 28 ◦C, and PAR = 250 W m−2).

Fig. 3 illustrates how growth rate (µ, d−1) (top row), QN (mol:mol) (middle row), and the Chl:C ratio (g:g) (bottom row) vary

for different phytoplankton ecotypes (i.e., a phytoplankton with a characteristic ESD calculated from Cdiv , Topt and αChl).

To facilitate understanding the responses, we plot the 2D contour plots by varying two traits (i.e., ESD vs Topt, ESD vs αChl,395

Topt vs αChl), while keeping the third trait constant. Below, we present the results for the summer period, characterised by a

constant DIN concentration of 0.10 mmol m−3, a temperature of 28 ◦C, and an irradiance of 250 W m−2.

In the left column, we present the effects of size and Topt, with a constant αChl of 0.08 W2 m−1 g Chl−1 mol C d−1. This

αChl value is designed to adapt to the current light conditions without strong photoinhibition. As anticipated, the maximum
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peak of µ is observed for small-size phytoplankton (< 3 µm), efficient at taking up nitrogen at low environmental concentra-400

tions, and with a Topt around 28-30 ◦C, close to the environmental temperature (Fig. 3a). Moreover, we observe close to zero

µ values for the whole size range when Topt is far from the environmental temperature, highlighting maladapted ecotypes. QN

shows maximum values for small phytoplankton cells, almost regardless of Topt (Fig. 3b), decreasing towards largest sizes,

consistent with the observations by Baer et al. (2017). In this particular scenario, where both irradiance and αChl are constant,

the Chl:C ratio also peaks for small cells with high Topt (Fig. 3c), similar to µ. The increase in the Chl:C ratio for large-size405

ecotypes and Topt < 10 ◦C may be related to the minimum growth in carbon content (Fig. 3a).

In the middle column, we present how growth, QN and Chl:C ratios change with size and αChl, with a constant Topt of

30 ◦C. This Topt value is close to the environmental temperature (28 ◦C), indicating adapting to the ambient temperature. µ

peaks for small phytoplankton (< 3 µm) and αChl around 0.10 W2 m−1 g Chl−1 mol C d−1 (Fig. 3d). The light condition of

250 W m−2 favor organisms with low light affinity values (αChl < 0.20 W−1 m2 g Chl−1 mol C d−1) with high capability410

of photo-repair. QN mainly depends on size, progressively decreasing towards the largest sizes (Fig. 3e). Other things being

equal, the cells with more optimal αChl values tend to have lower N:C (Fig. 3e). Chl:C ratio shows the maximum values for

the smallest phytoplankton with the lowest αChl, and the minimum values for the largest phytoplankton with the highest αChl

(Fig. 3f). As larger αChl increases the probability of photoinhibition and reduces the carbon-specific photosynthesis rate, the

amount of cellular chlorophyll content also decreases relative to carbon.415

In the right column, we present the effects of Topt and αChl, with a constant ESD of 1.36 µm. As anticipated, given the

defined environmental conditions, the highest growth rate (µ) is achieved by phytoplankton cells with a Topt close to the

environmental temperature and αChl values around 0.10 W−1 m2 g Chl−1 mol C d−1, which are better adapted to high

irradiance (Fig. 3g). Moreover, QN increases with Topt, with a minimum corresponding to cells with high growth (Fig. 3h).

Similarly, the Chl:C ratio is maximized for ecotypes with Topt closer to the environmental temperature, and characterized by420

lower αChl values, resulting in reduced photoinhibition (Fig. 3i).

3.2 Comparisons with observations

We compared the observed DIN, Chl, and NPP at the BATS station with the model output (Fig. 4). Our model is able to repro-

duce the general qualitative patterns of these three variables, albeit with some quantitative differences. Both the observation

and the model output show an increase in surface DIN and Chl during the winter when mixing is the strongest (Fig. 2). The425

model also successfully reproduces the deep chlorophyll maximum between 50 and 100 m. In spite of the presence of the

deep chlorophyll maximum, the model can also reproduce the surface maximum of NPP which extends below 50 m during

the summer. In other words, our model manages to resolve the paradox of low Chl but high NPP at surface waters during the

summer in the oligotrophic subtropical ocean.

Admittedly, there are some differences between the model output and the observations. The model appears to underestimate430

DIN in deep waters and overestimate Chl in the euphotic zone, which is likely because the phosphorus limitation at BATS is

not considered in our model (Ammerman et al., 2003).
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Figure 4. Comparing (a, b) DIN (mmol m−3), (c, d) Chl (mg m−3), and (e, f) NPP (mg C m−3 d−1) between observations and model

outputs.
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3.3 Modelled patterns of passive particles

Fig. 5 compares the vertical distribution of passive particles and phytoplankton super-individuals, enabling us to verify if the

Lagrangian module properly models the random walk of particles. While the distribution of phytoplankton super-individuals435

can be additionally affected by cell division and death, the distribution of passive particles is driven purely by diffusion.

As passive particles (Fig. 5a) are homogeneously distributed throughout the water column, we can affirm that the particle

random walks are working correctly. During periods of high vertical mixing, the distribution of super-individuals shows a

homogeneous pattern (Fig. 5b). However, as expected, during the period of strong stratification of the water column (April

- October), more pronounced differences were observed. A greater number of super-individuals were found in the euphotic440

layer, where conditions for survival are optimal, with their abundance decreasing in deeper layers.
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Figure 5. Mean temporal and vertical frequencies of (a) passive particles and (b) phytoplankton super-individuals every 5 m depth and every

5 days along the last year’s simulation. The white lines represent the Mixed Layer Depth (MLD, m).

3.4 Modelled patterns of phytoplankton carbon, nitrogen, zooplankton and detritus

Phytoplankton carbon and nitrogen concentrations, for which no observational data are available, show similar patterns. Both

of them peak at spring after the shoaling of mixed layer depth (Fig. 6A,B). Before the spring bloom, surface phytoplankton

carbon and nitrogen can penetrate deeper than 150 m due to strong winter mixing. Similar to the patterns of chlorophyll,445

phytoplankton carbon also shows elevated concentrations at the deep chlorophyll maximum during summer, although this

maximal layer is not as pronounced as that of chlorophyll.

By contrast, zooplankton biomass peaks in the summer and autumn after the phytoplankton spring bloom (Fig. 6C), sug-

gesting that the demise of the phytoplankton spring bloom is at least attributed to intensified zooplankton grazing. Detritus also
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peaks after the phytoplankton spring bloom, but unlike zooplankton, its concentration gradually declines with time, as a result450

of both accelerated decomposition due to high temperature and shifts in zooplankton size structure.
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Figure 6. Modelled patterns of (a) phytoplankton carbon, (b) phytoplankton nitrogen, (c) total zooplankton nitrogen, and (d) detritus.

3.5 Modelled Chl:C and N:C ratios

The phytoplankton cellular N:C and the Chl:C ratios are important phytoplankton properties that show the extent of how

phytoplankton cells acclimate to the light and nutrient environment. They are also crucial to link phytoplankton carbon to

satellite observations of chlorophyll to and to the limiting element nitrogen (Fig. 7).455

The model output provides higher Chl:C ratios in the surface mixed layer during the winter as a result of enhanced nutrient

supply due to strong mixing. The Chl:C ratios are low in both the surface layer in the summer and in deep waters beneath the

surface mixed layer. These patterns can be understood as an outcome of the balance between photosynthesis and chlorophyll

synthesis. Under high light and low nutrient conditions, phytoplankton cells reduce the rate of chlorophyll synthesis relative to

carbon synthesis and vice versa. However, when the light is too low, the synthesis rate of chlorophyll is too low to sustain the460

maintenance of chlorophyll, leading to a phenomenon known as “bleaching" (Pahlow et al., 2013; Behrenfeld et al., 2016).
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While the patterns of Chl:C ratios can be easily understood from the perspective of environmental control, N:C ratios are

more related to changes in phytoplankton size than to the environment DIN or light. While one might expect that phytoplankton

cells should have lower N:C at the surface during the summer due to low DIN, the model actually predicts the opposite pattern.

This is because the summer surface waters are dominated by small cells which tend to have larger N:C ratios (Marañón et al.,465

2013; Baer et al., 2017).
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Figure 7. Modelled patterns of phytoplankton (a) Chl:C ratio (g Chl mol C−1) and (b) N:C ratio (mol N mol C−1).

3.6 Modelled phytoplankton trait distribution and functional diversity

Our model shows a typical pattern that phytoplankton mean size increases with nutrient availability (Fig. 8A). Phytoplankton

mean size is the smallest at the surface during the summer and autumn where DIN is low, but increases with depth as nutrients

become more abundant. During winter, phytoplankton mean size is also larger at the surface during the winter (but not as large470

as in deeper waters during summer) when nutrient concentrations are higher due to stronger mixing.

Phytoplankton size variance (Var(Cdiv)) is an index for size diversity and is the greatest in the area of deep chlorophyll

maximum during summer and autumn and the lowest beneath the euphotic zone (150 m) (Fig. 8B). The high size variance at

deep chlorophyll maximum results from the movements of small cells from above and large cells from below. Size variance is

also slightly greater at the surface during the winter than the summer due to more abundant nutrients, but not as high as those in475

the deep chlorophyll maximum. This suggests that dispersal probably plays the most important role in affecting size diversity.
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As expected, phytoplankton community mean Topt largely follows seawater temperature, with higher values at the surface

during summer and lower at depth (Fig. 8C). However, phytoplankton mean Topt show the lowest values at the area of deep

chlorophyll maximum during summer and autumn, corresponding to the maximal variance of Topt (Fig. 8D). Otherwise, the

variance of Topt generally shows larger values in the surface mixed layer than at depth.480

Phytoplankton mean light affinity (αChl) also follows the opposite pattern of light availability, being the lowest at the summer

surface and the highest in the deepest waters (Fig. 8E). The variance of αChl shows a qualitatively similar pattern with those

of variance of Cdiv and Topt, being higher during the winter and at the deep chlorophyll maximum (Fig. 8F), again suggesting

mixing can enhance trait variance and diversity.

The covariances between traits suggest selection forces against different traits. The covariance between Topt and Cdiv is485

largely negative during the winter, suggesting larger cells tend to be cold-adapted at local scales. Conversely, Cov(Topt, Cdiv)

is often positive at surface and deep chlorophyll maximum during summer at local scales. It is important to note that these

covariances are calculated at local scales. We can still observe negative Cov(Topt, Cdiv) for the whole water column in which

the small and warm-adapted cells are at the surface and large and cold-adapted cells are at depth.

The covariance between Topt and αChl is largely negative, suggesting that due to the negative environmental correlation490

between temperature and light, cold-adapted cells tend to adapt to the low light. The covariance between size and αChl is

mostly positive during winter and at deep chlorophyll maximum, indicating larger cells tend to adapt to low light.

24

https://doi.org/10.5194/gmd-2024-130
Preprint. Discussion started: 22 August 2024
c© Author(s) 2024. CC BY 4.0 License.



Day

D
ep

th
 (

m
)

0 180 360

-200

-150

-100

-50

(a) Mean ESD (7m)

100

102

0 180 360

-200

-150

-100

-50

(b) Var(CDiv) (log pmol C cell-1)2

5

10

15

0 180 360

-200

-150

-100

-50

(c) Mean Topt (ºC)

20

22

24

26

0 180 360

-200

-150

-100

-50

(d) Var(Topt) (ºC
2)

100

102

0 180 360

-200

-150

-100

-50

(e) Mean Ln ,Chl

-2

-1.5

-1

0 180 360

-200

-150

-100

-50

(f) Var(Ln ,Chl)

0.02

0.04

0.06

0.08

0.1

0 180 360

-200

-150

-100

-50

(g) Cov(Topt, size)

-1

-0.5

0

0.5

1

0 180 360

-200

-150

-100

-50

(h) Cov(Topt, Ln ,Chl)

-0.2

-0.1

0

0.1

0 180 360

-200

-150

-100

-50

(i) Cov(size, Ln ,Chl)

-0.2

0

0.2

0.4

0.6

Figure 8. Temporal and vertical patterns of traits weighted by phytoplankton carbon content (Eq. 14). (A) Mean phytoplankton size (ESd)

back-transformed from the carbon threshold of cell division (Cdiv). (B) Variance of phytoplankton Cdiv . (C) Mean phytoplankton optimal

temperature (Topt). (D) Variance of phytoplankton Topt. (E) Mean phytoplankton light affinity represented by ln-transformed slope of

Photosynthesis-Irradiance curve (αChl). (F) Variance of phytoplankton Ln αChl. (G) Covariance between phytoplankton Topt and Ln Cdiv .

(H) Covariance between phytoplankton Topt and Ln αChl. (G) Covariance between phytoplankton Ln Cdiv and Ln αChl.

The modelled patterns of functional richness largely follow those of (co)variances (Fig. 9). Both functional richness and

evenness are greater during the winter season with strong mixing and at the layer of deep chlorophyll maximum.
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Figure 9. Modelled patterns of phytoplankton functional (a) richness and (b) evenness weighted by cellular carbon.

3.7 Plankton size spectra495

During both seasons, log abundances form linear relationships with log size (biovolume) for both phytoplankton and zoo-

plankton. The slopes of phytoplankton size spectra were between -1.35 and -1.1, consistent with what would be expected for

phytoplankton communities in oligotrophic oceans (Fig. 10) (Marañón, 2019). The slopes of the phytoplankton size spectra

were more negative in the summer than in the winter, also consistent with previous observations that the phytoplankton size

spectra became steeper and small phytoplankton became more dominant when nutrient supply diminishes (Huete-Ortega et al.,500

2014).
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By contrast, the slopes of zooplankton were similar between summer and winter and were less steep than those of phyto-

plankton (Fig. 10). This relates to three factors. First, large zooplankton have a wider feeding kernel than small ones, thus

having access to a wide range of prey. Second, the predator-prey size ratio increases with predator size, which makes the slope

of size spectra less steep (Trebilco et al., 2013). Third, large zooplankton can also feed on small zooplankton. These patterns505

are consistent with the observations in marine plankton communities that more biomass can exist in larger size classes, which

leads to an inverted biomass pyramid (Gasol et al., 1997; Trebilco et al., 2013).
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Figure 10. Phytoplankton (Phy) and zooplankton (Zoo) size spectra at the surface during the (a) Winter (31st March) and (b) Summer

period (31st August). The dots show the abundance of each size class. The straight lines show the OLS regression lines. The slopes of each

regression line are also shown.

3.8 Diel variability of phytoplankton cell

Our model allows to track the properties of a phytoplankton cell throughout a diel cycle to gain insights from the life history

of the cell. Fig. 11 shows the trajectory of a randomly selected super-individual during the first week of the winter and the first510

week of the summer period (hourly resolution).
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During the winter period, this phytoplankton particle was dispersed widely between the surface and 50 m in the water column

due to strong mixing (Fig. 11a). Because the water column was well mixed, it was exposed to relatively stable conditions of

temperature (∼ 19.50 ◦C) and DIN (Fig. 11b,d). By contrast, this particle experienced variable PAR conditions, oscillating

between daily maximums ∼ 50 W m−2 and 200 W m−2. By comparison, the variations of Chl:C ratio (θC) are modest (Fig.515

11h), suggesting its limited acclimation capability.

During the summer period, the super-individual position was more stable at around 35 m in the first seven days due to weak

mixing (Fig. 11a). As a consequence, the environmental conditions (temperature, DIN, and PAR) the particle experienced were

relatively stable. However, the variabilities of phytoplankton QN and θC are of the same magnitude between summer and

winter, mainly due to diel changes of light.520

The phytoplankton QN and θC were higher during the winter period (Fig. 11g, red line) than during the summer (blue line),

reflecting the higher nutrient and lower light environment in the winter.

In spite of the seasonal differences, both particles divided twice during this period (Fig. 11e-f). The phytoplankton cellular

carbon content increased progressively with time before the division event until reaching the division threshold (Fig. 11f).

When this threshold was reached, the number of phytoplankton cells doubled and the cellular carbon, nitrogen and Chl content525

halved (Fig. 11e-f).

Irrespective of the birth event, we can also observe clear diel changes in cellular carbon, nitrogen, and chlorophyll contents

induced by light-driven photosynthesis, nutrient uptake, chlorophyll synthesis, and dark respiration. Cellular carbon increased

from sunrise to sunset but declined in the dark due to respiration. Correspondingly, N:C and Chl:C ratios declined during the

daytime and increased during nighttime.530
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Figure 11. Tracking a randomly selected phytoplankton super-individual for 7 days (hourly resolution) during the winter (red solid lines) and

the summer (blue dashed lines) periods. (a) Depths (m) between which the super-individual oscillated in the water column. (b) Differences in

the Temperature (◦C) conditions experienced by the super-individual. (c) Differences in the Photosynthetically Active Radiation conditions

(PAR; W m−2) experienced by the super-individual. (d) Differences in the nitrogen concentration conditions (NO3, pmol N m−3) experienced

by the super-individual. (e) Temporal evolution of phytoplankton cell abundance (number of cells) within the selected super-individual. (f)

Temporal evolution of cellular carbon content (PC , pmol C cell−1). (g) Temporal evolution of nitrogen cellular quota (QN , pmol N pmol

C−1). (h) Temporal evolution of chlorophyl to carbon cellular ratio (θC , mg Chl mmol C−1). Vertical dashed lines indicate the beginning of

each day. (The panel labels are missing).

3.9 Effect of number of super-individuals

We investigated the effect of the number of phytoplankton super-individuals on the key model outputs such as DIN, phyto-

plankton biomass and diversity by running three simulations with 5,000, 10,000, and 20,000 super-individuals. We computed

the temporal trends of key variables integrated throughout the water column during the final year of each simulation (Fig. 12).

The number of phytoplankton super-individuals has negligible effects on the bulk properties such as DIN, ZOO, PN , PC ,535

Chl and NPP (Fig. 12a-f). However, the number of phytoplankton super-individuals has noticeable effects on phytoplankton

functional richness and evenness. The lower numbers of super-individuals lead to lower estimates of phytoplankton functional

richness and evenness than 20,000 super-individuals during most times of the year. Moreover, the simulation with lower

numbers of super-individuals struggles to converge to regular seasonal cycles of functional richness and evenness, suggesting

that a sufficient number of phytoplankton super-individuals is required to represent phytoplankton diversity.540
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Figure 12. Comparisons of simulations with different numbers of super-individuals on vertically integrated variables. (a) Dissolved inorganic

nitrogen (DIN, mmol m−2). (b) Phytoplankton carbon (PC , mmol C m−2). (c) Phytoplankton nitrogen (PN , mmol N m−2). (d) Chlorophyll

(Chl, mg m−2). (e) Net primary production (NPP, (mg C m−2 d−1). (f) Zooplankton biomass (ZOO, mmol N m−2). (g) Phytoplankton

functional richness. (h) Phytoplankton functional evenness.
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4 Discussion

We have presented a novel hybrid Eulerian-Lagrangian plankton model that treats phytoplankton as particles or superindividu-

als. We assign three master traits (cell size (Cdiv), temperature affinity (Topt), and light affinity (αChl)) to each phytoplankton

super-individual and these master traits determine many other physiological traits involved in nutrient uptake and photosyn-

thesis. We also incorporate acclimation and evolution in this model, making it suitable for addressing many questions in545

phytoplankton ecology and evolution.

4.1 A brief history of individual-based models on phytoplankton

In recent decades, individual-based models have gained popularity in ecology modelling. This approach allows to simulate

the non-linear effects of the physical environment (Woods and Onken, 1982), the interaction between individuals, the life

cycles of individuals (Grimm et al., 2006; Hellweger et al., 2008; Hense and Beckmann, 2010), the adaptive behaviour, and the550

intrapopulation variability in response to internal and external environmental conditions (Hellweger et al., 2008; Grimm et al.,

2010).

In oceanography, the first individual-based models were developed between the late 1970s and early 1980s (Ledbetter, 1979;

Platt and Gallegos, 1981; Falkowski and Wirick, 1981; Woods and Onken, 1982). However, because of their high computational

cost, it was not until recent decades that they started to gain momentum (Cianelli et al., 2004; Woods, 2005; Nogueira et al.,555

2006; Cianelli et al., 2009; Beckmann et al., 2019; Ranjbar et al., 2021). To obtain a realistic representation of the phytoplankton

community, it is necessary to model a large number of Lagrangian particles. Each particle is modelled individually, thus

obtaining a unique history of interaction with the environment and other particles. Therefore, the computational cost will be

proportional to the number of particles considered. One way to limit this computational cost is to model Lagrangian particles

as super-individuals (Scheffer et al., 1995), although this approach may restrict the population’s heterogeneity and diversity560

(Ranjbar et al., 2021) if the total number of particles is not high enough. With the increasing computing power, this problem is

of less severity in individual-based models.

Several studies, employing the Lagrangian Ensemble model, have also depicted zooplankton as Lagrangian particles (agents)

(Woods and Barkmann, 1993, 1994; Woods, 2005; Nogueira et al., 2006). However, these studies define a singular class of

herbivorous zooplankton that feeds indiscriminately on all phytoplankton particles, irrespective of their size. Furthermore,565

they do not account for the interaction between a phytoplankton particle and zooplankton, essentially adopting an Eulerian

approach. In other words, when calculating grazing, a zooplankton particle is allowed to consume phytoplankton particles

within the same grid layer without considering physical interaction. While our model has considered zooplankton size structure

and size-dependent feeding kernels, it will be our next step to model zooplankton as Lagrangian particles which can account

for more detailed interactions between zooplankton and phytoplankton particles.570

In summary, individual-based models are gaining popularity thanks to the increasing computing power and they can provide

novel insights that conventional models fail to provide.
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4.2 Strengths and limitations of the model

There are several strengths of our model. First, the individual-based phytoplankton model captures the realistic physical move-

ment and acclimation status of a phytoplankton cell affected by ocean turbulence. It has been widely acknowledged that for575

both Eulerian models and in situ incubations, the estimates of primary production can be biased although the extent of this

bias is uncertain (Barkmann and Woods, 1996; Ross and Geider, 2009; Baudry et al., 2018). Part of the differences in the bias

estimates may be due to the traits of the phytoplankton cells. Most of the previous individual-based phytoplankton models

do not consider phytoplankton functional diversity (i.e., the different traits associated with each cell). While the aim of this

paper is not to compare the primary production estimates between the Eulerian model and Lagrangian model (as developing an580

Eulerian version of the same plankton model is beyond the scope of this paper), it remains to be investigated how the estimates

of primary production can differ between the Eulerian model and Lagrangian model in different environments (e.g., stratified

vs. well-mixed water column).

Second, our phytoplankton model captures three dimensions of phytoplankton traits. We have followed the DARWIN model

(Follows et al., 2007; Barton et al., 2010; Dutkiewicz et al., 2020) to assign three master traits to phytoplankton albeit with585

slight differences. The assumption of designing these three traits is that they are largely orthogonal to each other. In other

words, small and large cells have an equal probability of being warm-adapted or cold-adapted and they also have the same

probability of being high-light-adapted or low-light-adapted. How the changes of these traits affect phytoplankton acclimation

and the differences in primary production estimates between Eulerian and Lagrangian models remain to be investigated using

our model.590

Third, our phytoplankton model allows phytoplankton evolution. We have built the functionality of phytoplankton evolution

in the Lagrangian model enabling the mutation of all three master traits of phytoplankton super-individuals. Modelling phyto-

plankton evolution has been a hot topic recently (Ward et al., 2019; Beckmann et al., 2019) and the individual-based model is

an ideal and straightforward approach to accommodate mutation and evolution (Acevedo-Trejos et al., 2022). We will use this

model to further explore how evolution affects phytoplankton diversity and primary productivity.595

We also highlight several limitations of our model which will be addressed in future work. One weakness of the current

model is the slow computation. To obtain a realistic representation of the phytoplankton community, it is necessary to model a

large number of particles. As each particle is modelled individually, the computational cost will be proportional to the number

of particles considered. To obtain a satisfactory model result of phytoplankton diversity, it is desirable to model as many

particles as possible (Fig. 12), thus incurring heavy computation costs.600

The short time step is needed for correctly simulating the random walk (Ross and Sharples, 2004). In fact, to meet the

requirement of short timestep (<6 s) in the random walk but to minimize computation time, we have made the timestep of

biological reactions 100 times longer than the time step of the random walk.

We have also implemented openMPI parallel computing for simulating the random walk of both the passive and phytoplank-

ton particles. However, the computation is still too slow to allow effective sensitivity analysis or parameter optimization. In605

the future, we will make the computations of biological reactions in parallel and will attempt openMP which may allow more
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efficient memory sharing among threads. Another more advanced remedy would be to implement GPU computing to speed up

the computation.

The second limitation relates to the inadequate parameterization of the phytoplankton model using laboratory data and the

need for more extensive validation of the overall 1D model output. While the size scaling of nutrient uptake has been studied610

extensively in the literature (Edwards et al., 2012; Marañón et al., 2013) and the temperature dependence of phytoplankton

growth seems clear (Thomas et al., 2012; Chen, 2022), how the light traits of phytoplankton affect growth are relatively un-

known particularly when considering the effect of photoacclimation. Edwards et al. (2015) analysed the relationships between

light traits (e.g., slope of the P-I curve). However, the model they used did not consider the dependence of photosynthetic rate

on the Chl:C ratio or photoinhibition. To consider both the effects of Chl:C ratio and photoinhibition on photosynthesis of phy-615

toplankton, we have to assume an empirical relationship between αChl and repair rate based on the contrast between high-light

adapted and low-light adapted ecotypes of Prochlorococcus (Moore et al., 1998). However, it remains unclear how this scal-

ing relationship can be applied to phytoplankton in general. We need more data on this to obtain a more reliable relationship

between the photosynthetic parameters.

The model outputs of phytoplankton traits also need to be validated against observations. While the measurements of phy-620

toplankton size structure can be obtained, other traits such as Topt and αChl are difficult to measure in situ on a cellular basis.

Moreover, even the bulk properties such as the N:C and Chl:C ratios of the whole phytoplankton assemblage are difficult to

measure in situ due to the difficulties associated with measuring phytoplankton carbon and nitrogen. Only a few studies have

managed to measure cellular carbon and/or nitrogen of phytoplankton using flow cytometric sorting (Graff et al., 2012; Baer

et al., 2017), while, for larger cells, most studies relied on microscopic counting to estimate phytoplankton cell volume which625

can then be converted to carbon (Cloern, 2018) without any measurement of cellular nitrogen. These types of information is

essential for studying biogeochemical cycling and validating ecosystem model outputs.

Another limitation is that the model may be overly complicated if we want to understand the key factor in controlling some

ecological phenomenon (see below). The model has included multiple traits and processes which form an intertwined feedback

network that makes it challenging to isolate the direct effect of a single factor. For example, if we aim to assess whether primary630

production is limited by nutrient supply or light availability by performing a single-factor perturbation experiment, the increase

in nutrient supply will not only affect the nutrient status but also the trait distribution of the whole phytoplankton community.

This change in the mean trait of phytoplankton depends on the existing trait diversity of the community (and the mutation rate

of individual cells) about which we have little information (Acevedo-Trejos et al., 2015; Chen et al., 2019). If a user already

knows that the system can be simplified (e.g., there is little variability in phytoplankton thermal or light traits), the user can635

modify the initial condition and the mutation rate to remove the unnecessary trait variance. Thus, one can simplify this model

to a single-trait (e.g., size) phytoplankton model if desired.

Finally, needless to say that our model only considers one limiting nutrient – nitrogen without considering other important

elements such as phosphorus or silicate, which probably leads to some discrepancy between observations and our model

outputs at BATS where phosphorus is limiting. It is up to the user to decide whether to add these nutrients to the model and640

also depends on the question being asked.
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4.3 Potential applications

Below we discuss several potential applications of our model. Note that these are not exhaustive, but just serve as potential

interesting directions.

4.3.1 Validating in situ measurements of primary production645

An obvious application of our model is to check the bias in in situ measurements of primary production for which incubation

bottles are tethered at fixed depths and the phytoplankton cells within the bottles experience different light environments

from those being mixed throughout the water column. While several studies have attempted to address this problem using

Lagrangian phytoplankton models (Barkmann and Woods, 1996; Baudry et al., 2018; Tomkins et al., 2020), they often overlook

phytoplankton traits. The most important phytoplankton trait for this problem would be likely light-related traits (e.g., αChl)650

which are rarely considered in phytoplankton Lagrangian models.

In addition, it is not only the trait itself but also the trait distribution that can matter for primary production. In other

words, phytoplankton diversity and community composition have to be taken into account to assess how accurate the in situ

measurements of primary production are. Since phytoplankton trait distribution is not static across time and space, the bias

also depends on the phytoplankton community being sampled, so there is no guarantee that the bias can be easily extrapolated655

to other cases. The caveat is that we need to know the phytoplankton trait distributions (which are even harder to measure) to

assess the accuracy of primary production estimates.

4.3.2 Understanding what controls phytoplankton diversity

The central theme of ecology revolves around understanding the factors that regulate biodiversity. Vellend and Agrawal (2010)

presented a unified view of four processes controlling biodiversity: selection, dispersal, drift, and evolution. While many studies660

investigate what regulates phytoplankton diversity in the ocean (Barton et al., 2010; Vallina et al., 2014; Righetti et al., 2019;

Dutkiewicz et al., 2020), few managed to examine the holistic effects of all four processes on biodiversity.

Our model already incorporates the processes of selection, dispersal, and evolution and can be easily adapted to integrate

drift to address this gap. One challenge would be again about the computational costs if one wishes to understand the large-

scale patterns of phytoplankton diversity by coupling the individual-based model with a global circulation model (Hellweger665

et al., 2014). Nevertheless, this challenge can be addressed using advanced computing techniques as described above.

4.3.3 Understanding how phytoplankton acclimation and trait distribution affect phytoplankton distribution

Biological oceanographers have long been fascinated by distinctive patterns of phytoplankton distribution in the ocean such

as the deep chlorophyll maximum (Cullen, 2015) and spring bloom (Behrenfeld, 2010; Lévy, 2015). Despite extensive study,

debates persist on what mechanisms drive these patterns.670

The formation of deep chlorophyll maximum remains enigmatic with ongoing debate as to whether it reflects an actual

accumulation of phytoplankton biomass or is primarily driven by photoacclimation for which phytoplankton cells increase
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their intracellular pigment content to acclimate to the low light condition. There is evidence that some phytoplankton species

may be more abundant at the surface but show a peak of total pigments at the layer of deep chlorophyll maximum, while

some other species may indeed show greater biomass at this layer (Chen et al., 2011). Again, the location of the phytoplankton675

biomass peak likely depends on phytoplankton traits. Our model is an ideal tool for elucidating the contribution of real biomass

versus the photoacclimation effect to the layer of deep chlorophyll maximum.

Similar arguments can be raised for the spring bloom. Behrenfeld (2010) argued that contrary to the light effects (i.e., the

critical depth hypothesis), the coupling between phytoplankton growth and zooplankton grazing plays a critical role in induc-

ing the spring bloom. Lévy (2015) also used a 1D NPZD model to test different hypotheses and highlighted the importance680

of physics forcing on the validity of each hypothesis. However, few studies have considered the roles of the changes in phyto-

plankton traits and photoacclimation in determining the onset of spring bloom. Our model presents an exciting opportunity to

fill this knowledge gap.

4.3.4 Understanding diel variations in phytoplankton cell properties

Another potential application of our model is to understand the diel variations of cell size, abundance, and cell cycle of phyto-685

plankton in the oligotrophic ocean (Vaulot et al., 1995; Li et al., 2022). It is an interesting phenomenon that picophytoplankton

cells such as Prochlorococcus and Synechococcus tend to show synchronized growth over a diel light/dark cycle. Phytoplank-

ton cells tend to increase the size from sunrise to sunset but divide in late afternoon or evening, thus creating a mismatch

between cell carbon production and abundance (Li et al., 2022). However, these diel rhythms can be different for different

groups of phytoplankton (Vaulot and Marie, 1999). It is still unclear how these different patterns can be entirely explained690

by environmental (light, nutrient) variations or at least partly due to endogenous circadian clock (Heath and Spencer, 1985;

Hellweger et al., 2020).

As our model is driven by a diel light/dark cycle, it can be used to understand what regulates the changes in cell properties

linked to the cell cycle. Our model can be further modified to include cell cycles of phytoplankton to understand what controls

phytoplankton division (Pascual and Caswell, 1997). Another promising future direction is to include more molecular processes695

such as gene expression and protein synthesis into the phytoplankton cell cycle, thus allowing us to link molecular studies with

phytoplankton traits (Hellweger, 2020; Hellweger et al., 2020).

5 Conclusions

We introduce a novel 1D-hybrid Eulerian-Lagrangian, uniquely tailored to explore how water column dynamics shape phyto-

plankton dynamics. Phytoplankton are modelled as super-individuals, a Lagrangian particle that represents a cluster of clonal700

phytoplankton cells that are physiologically identical and share a common history. Each phytoplankton super-individual is

characterized by its cell size, temperature affinity and light affinity. Furthermore, these super-individuals possess the capabil-

ity to mutate, enhancing the model’s capacity to simulate phytoplankton growth, productivity, and diversity within dynamic

aquatic environments.
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The seasonal variability of temperature, irradiance, and vertical diffusivity at the BATS station enabled us to evaluate the re-705

sponse of our ecological model to environmental changes. By employing three master traits (size, temperature affinity, and light

affinity), the individual-based model illustrates the evolution and adaptation of the phytoplankton community to environmental

conditions and the competition between different phytoplankton ecotypes. Furthermore, the model allows individual analy-

sis, allowing us to scrutinize how each phytoplankton super-individual responds to the environmental conditions it encounters

throughout its life cycle. The model also has several weaknesses, such as high computational costs, and the need for extensive710

parameterization, and validation. However, with the appropriate experimental design, it has several potential applications that

would help us address questions related to the individual growth of phytoplankton, as well as the productivity and diversity of

the phytoplankton community.
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